BAT54W1

SCHOTTKY BARRIER DIODE

Features

- Low forward voltage

Applications

- Ultra high-speed switching
- Voltage clamping
- Protection circuits

Top View
Marking Code: "MB"
Simplified outline SOD-123 and symbol

Absolute Maximum Ratings $\left(\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Value	Unit
Reverse Voltage	V_{R}	30	V
Forward Current	I_{F}	200	mA
Repetitive Peak Forward Current	$\mathrm{I}_{\mathrm{FRM}}$	300	mA
Peak Forward Surge Current $\left(\mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}\right)$	$\mathrm{I}_{\mathrm{FSM}}$	600	mA
Power Dissipation	P_{D}	230	mW
Thermal Resistance from Junction Ambient	$\mathrm{R}_{\mathrm{thJA}}$	500	$\mathrm{~K} / \mathrm{W}$
Junction Temperature	T_{J}	125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	T_{s}	-65 to +150	${ }^{\circ} \mathrm{C}$

Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Max.	Unit
$\begin{aligned} & \text { Forward Voltage } \\ & \text { at } I_{F}=0.1 \mathrm{~mA} \\ & \text { at } I_{F}=1 \mathrm{~mA} \\ & \text { at } I_{F}=10 \mathrm{~mA} \\ & \text { at } I_{F}=30 \mathrm{~mA} \\ & \text { at } I_{F}=100 \mathrm{~mA} \end{aligned}$	V_{F}	$\begin{aligned} & 240 \\ & 320 \\ & 400 \\ & 500 \\ & 800 \end{aligned}$	mV
Reverse Current at $\mathrm{V}_{\mathrm{R}}=25 \mathrm{~V}$	I_{R}	2	$\mu \mathrm{A}$
Total Capacitance at $\mathrm{V}_{\mathrm{R}}=1 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	C_{T}	10	pF
Reverse Recovery Time at $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{R}}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{R}}=10 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	t_{rr}	6	ns

Figure 1. Typical Forward Voltage Fonward Current at Various Temperatures

Figure 2. Typical Capacitance ${ }^{\circ} \mathrm{C}$ vs. Reverse Applied Voltage V_{R}

Figure 3. Typical Variation of Reverse Current at Various Temperatures

PACKAGE OUTLINE

UNIT	A	b_{p}	c	D	E	H_{E}	v	\angle
mm	1.15	0.6	0.135	2.7	1.65	3.9	0.2	5°

